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Abstract
We propose a framework for generating counterfactual explanations of black-box classifiers, which an-
swer the question “What has to change for this to be classified as X instead of Y?” in terms of given
domain knowledge. Specifically, we identify minimal and meaningful “concept edits” which, when ap-
plied, change the prediction of a black-box classifier to a desired class. Furthermore, by accumulating
multiple counterfactual explanations from interesting regions of a dataset, we propose a method to es-
timate a "global" counterfactual explanation for that region and a desired target class. We implement
algorithms and show results from preliminary experiments employing CLEVR-Hans3 and COCO as
datasets. The resulting explanations were useful, and even managed to unintendedly reveal a bias in
the classifier’s training set, which was unknown to us.
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1. Introduction

Public concerns about biases within machine learning (ML) models have created an increased
demand for transparent AI [1, 2]. End users are quickly realizing that, for them to confidently
be able to count on the impressive outputs of AI models, those outputs need to be accompanied
by proper explanations. Being able to assess the reasons behind an AI model’s suggestion is an
essential component of the trust that is needed for any organization, government, or professional
to assuredly count on AI tools and incorporate them into their workflow. Unsurprisingly, this
"black box" problem which gained popular traction with the introduction of ML tools to end-
users, was already a pain point for researchers in the Deep Learning field for many years [3].
Vetting a deep model for flaws and biases has been analogous to trying to perform an autopsy
on a brain in the hope of discerning its thoughts.

One of the more interesting techniques that are being tested in efforts of observing the
causation behind model outputs are counterfactual explanations. Counterfactual explanations
answer the question of “What would have to change for something to be classified as X instead
of Y”. A real, GDPR inspired [4, 5], example would be asking a bank’s AI model that declined
our loan “What would I have to change for my loan to be approved?”. Those types of questions
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have a whole spectrum of plausible combinations as answers. The algorithm’s goal is to find
the one requiring the least amount of change, customized for that particular situation, while
also being feasible and actionable in the real world. A key element of counterfactuals is their
reliance on notions of distance and similarity [6]. In our approach, we propose employing a
measure of conceptual distance of data samples combined with the amount of change at the
output of a black-box classifier as a criterion for getting counterfactual explanations.

There are many approaches to counterfactual explanations in recent literature. Poyiadzi et al.
[7] define counterfactual explanations as “feasible paths” in the data, which respect the data
distribution and satisfy feasibility and actionability constraints. We take inspiration from this
work and attempt to incorporate the constraints in our approach. Goyal et al.[8] propose a
method for detecting which regions in an image should be changed, by “opening” the black
box and utilizing the features extracted in the first layers of a deep neural network. They
approach the problem as a “minimum edit” problem which is close to the way we approach
the problem, with some important differences being: we do not require access to the model’s
weights, the explanations we provide have the form of concept edits instead of pixel edits, and
our approach is suited for any domain besides images. Another method for the visual domain
proposed by Zhao et al. [9], uses a text-to-image generative adversarial network to generate
counterfactual visual explanations. A similarity of this approach with ours is that they utilize
external knowledge and don’t solely rely on the given features and classes for a model. For
numeric tabular data, Gomez et al. [10] propose a heuristic method for detecting the minimal
set of changes required for the prediction of a classifier to change, and provide a visualization
tool for end-users. This approach is similar to ours in the sense that they compute a minimal set
of changes, however instead of being applied on continuous numerical features, ours is applied
on concepts that are independent of the features which the classifier accepts at its input. For
further reading, we refer to literature surveys on counterfactual explanations [11, 12].

The majority of AI today is data-driven, sub-symbolic machine learning. Models tend to be
convoluted, algebraic matrices that are difficult for humans to interpret. Knowledge graphs
[13], on the other hand, provide symbolic, background knowledge in a machine-readable and
human-understandable format. Knowledge representation techniques seem like a promising
complement to machine learning for providing meaningful explanations [14, 15]. For instance
Silva et al. [16] utilize knowledge graphs such as WordNet [17] in a composite approach for
text entailment. They simultaneously outperform the state-of-the-art while explaining their
predictions, thanks to the external knowledge. Liartis et al. [18] and Dervakos et al. [19] provide
explanations for black-box classifiers, by attempting to mimic the classifier’s behaviour with
semantic query answering over external knowledge. Daniels et al. [20] propose exploiting the
WordNet hierarchy to perform scene classification from images with neural networks in an
explainable fashion. Alirezaie et al. [21] utilize external ontological knowledge to explain the
errors of a satellite image classifier. For further reading on knowledge graphs as a tool for
explainability, we refer to the recent survey by Tiddi et al. [22]. Following this line of work, our
approach to counterfactual explanations makes use of external knowledge graphs, in the form
of concept hierarchies. Specifically, our contributions can be summarized as follows:

• We introduce a theoretical framework for representing and computing counterfactual
explanations with respect to concepts that characterize data samples and are linked with



external knowledge, in the form of concept hierarchies.
• We propose using a conceptual edit distance which is adaptable by the assignment of

costs via user input, in order to satisfy any real-world constraints. This edit distance is
based on the concept hierarchy, and is closely related to other semantic distance/similarity
measures which have been proposed over the years [23]

• We accumulate multiple counterfactual explanations, in order to generate a “global”
explanation for a specific class (which we call generalized counterfactual explanations).
To our knowledge, we are the first to explore global counterfactual explanations.

• We propose and implement algorithms for generating explanations in this context, and
show results from preliminary experiments.

2. Background

For describing concepts and the relationships between them we use the notation from description
logics [24]. Specifically, in this work we utilize data annotations which use a vocabulary linked
to concept hierarchies, in the form of taxonomies. We choose the formalism of description logics
because in the future we plan to expand our framework to work with more expressive knowledge
besides taxonomies of concepts. Given a set of concept names CN, each of which represents an
atomic concept, a concept C is defined as: C := A|⊤|⊥, where A ∈ CN, ⊤ is the universal concept
and ⊥ is the bottom concept. For defining relationships between concepts we use a TBox 𝑇 ,
which is a set of terminological axioms of the form: A ⊑ B, where A and B are atomic concepts,
and ⊑ denotes inclusion. Inclusion is transitive, meaning: (𝐴 ⊑ 𝐵 and 𝐵 ⊑ 𝐶) ⇒ 𝐴 ⊑ 𝐶 .
Such a TBox may be represented as a directed graph 𝐺 = (𝑉,𝐸), where there is a 1−1 matching
between vertices of the graph and concepts: 𝑉 ↔ CN ∪ {⊤}, and there is an edge from vertex
𝑣1 which matches to concept A1 to vertex 𝑣2 which matches to concept A2 iff A1 ⊑ A2 ∈ 𝑇 .
Furthermore, we consider any concept which appears only on the right of inclusion axioms in
the given TBox, is connected with an incoming edge from the node corresponding to ⊤. We will
refer to this graph as the TBox graph. When we ignore the direction of edges in the TBox graph,
we will refer to it as an undirected TBox graph. Throughout this paper we allow the assignment
of positive weights to edges of an undirected TBox graph. Finally, we view black box classifiers
𝐹 as functions 𝐹 : 𝒟 → [0, 1]𝑐, where 𝒟 is the classifier’s domain, i.e. what it expects at its
input (ex. images, text, vectors), and 𝑐 is the number of classes. With abuse of notation, when
an element 𝑥 is classified in class 𝐶 , we write 𝐹 (𝑥) = 𝐶 , while the output of the classifier for
class 𝐶 is written as 𝐹𝐶(𝑥)(∈ [0, 1]).

3. Interpreting Black-Box Classifiers with Terminology Based
Counterfactual Explanations

An overview of our framework is shown in Figure 1. In order to generate explanations for a
black-box classifier, we need a terminology in terms of which we express the explanations, in
addition to a set of testing items for the classifier. Specifically, we need a dataset, where for each
sample we require: a) features which can be fed to the classifier, and b) a semantic description of



the sample in the form of a set of concepts, in terms of which we will provide the explanations.
In the general case, this set of concepts is linked to external knowledge, in the form of a TBox.

Figure 1: System Architecture

Definition 1 (Explanation Dataset). Let 𝐹 : 𝒟 → [0, 1]𝑐 be a classifier. Given the domain 𝒟
of the classifier to be explained, and a set of atomic concepts CN, an explanation dataset for 𝐹
is a set of tuples {(𝑥𝑖, 𝐶𝑖)}, where 𝑥𝑖 ∈ 𝒟 and 𝐶𝑖 ⊆ CN

For instance, in an explanation dataset for image classifiers, the first element (𝑥𝑖) of a tuple
represents an image, while the second element (𝐶𝑖) might be a set of concepts that describe
objects in the image. In Section 5 we experiment on image classification explanation datasets
CLEVR-Hans3 [25] and COCO [26]. In another example, the first element of a tuple might be
raw text, which is fed to a black-box natural language model, while the second element might
be a set of concepts from external knowledge such as WordNet [17] or ConceptNet[27] , or
even domain-specific knowledge such as SNOMED-CT [28] for the medical domain, leading to
a dataset similar to the one used in [29].

Given an explanation dataset, we can answer the question “What has to change in order to be
classified as X instead of Y?” in terms of concepts (𝐶𝑖), instead of features (𝑥𝑖). In many cases,
this leads to more intuitive explanations, especially in cases in which 𝑥𝑖 is sub-symbolic raw



data (pixels, audio signals, etc), and 𝐶𝑖 is linked to useful knowledge. More specifically, the
explanations which we generate will have the form of edits on a set of concepts, where the cost
of each edit is determined by the distance between concepts in the TBox graph.

Definition 2 (Concept Distance). Let CN be a set of atomic concepts, 𝑇 be a TBox for CN, and
𝐺𝑇 be the corresponding undirected TBox graph. The distance from conceptA to conceptB, where
A,B ∈ CN ∪ {⊤} is defined as the length of the shortest path on 𝐺𝑇 from the vertex 𝑣A to the
vertex 𝑣B, where 𝑣A, 𝑣B are the vertices corresponding to atomic concepts A,B. We write 𝑑𝑇 (A,B)
to denote concept distance.

For example if we were given the TBox {Cat ⊑ Mammal,Dog ⊑ Mammal,Ant ⊑
Insect,Mammal ⊑ Animal, Insect ⊑ Animal}, then the concept distance fromCat toDog would
be 2, with the path on 𝐺𝑇 being Cat → Mammal → Dog. The concept distance from Cat to Ant
would be 4 with the shortest path being Cat → Mammal → Animal → Insect → Ant. Finally,
the concept distance from Cat to ⊤ would be 3 with the path Cat → Mammal → Animal → ⊤.

We will use the notion of concept distance for assigning cost to edit operations on sets of
concepts. These edit operations will end up being part of the counterfactual explantions.

Definition 3 (Concept Set Edit). Let CN be a set of atomic concept names, 𝑇 be a TBox for CN,
and 𝒜 ⊆ CN be a set of concepts. A concept set edit on 𝒜 is any of:

• Replacement of concept A ∈ 𝒜 with concept B ̸∈ 𝒜. We write 𝑒A→B(𝒜) to denote re-
placement of A from 𝒜 with B.

• Deletion of concept A ∈ 𝒜 from 𝒜. We write 𝑒A→⊤(𝒜) to denote deletion of A from 𝒜.
• Insertion of concept B ̸∈ 𝒜 into 𝒜. We write 𝑒⊤→B(𝒜) to denote insertion of B into 𝒜

The cost of a concept set edit 𝑒𝑥→𝑦 is defined as the concept distance from 𝑥 to 𝑦: 𝑑𝑇 (𝑥, 𝑦),
where 𝑥, 𝑦 ∈ CN ∪ {⊤}. The resulting set of concepts 𝑒𝑥→𝑦(𝒜) is called a transformation of 𝒜.

As mentioned in Section 2, we allow for the assignment of positive weights to the undirected
TBox graph. This is done to allow for the incorporation of additional constraints to better
reflect the actionability and feasibility of changes in the real world. In this work, we do not
systematically do this, as we consider it to be given. For example for a given application, it
might be useful to make the deletion of an Animal concept (𝑒Animal→⊤) more costly than the
replacement of aCat concept with aMammal concept (𝑒Cat→Mammal), so we would appropriately
tweak the edge weights of the undirected TBox graph.

As is apparent from the notation 𝑒𝑥→𝑦 , we treat the deletion of concept A from a set as if
being equivalent to its replacement with the universal concept ⊤, while the insertion of concept
B is treated as if replacing a ⊤ concept with B. This entails that inserting or deleting a concept
is more costly the further away it is from the ⊤ vertex in the TBox graph, which is a measure
of how specific the concept is. Continuing the previous example, given a set 𝒜, then inserting
a Cat concept into the set would have a cost of 𝑑𝑇 (⊤,Cat) = 3, while inserting an Animal
concept into the set would have a cost of 𝑑𝑇 (⊤,Animal) = 1. Using the concept set edit, we
can define a concept set edit distance between sets of concepts, as the minimum cost of a set of
concept set edits which when applied to the first set of concepts, transform it into the second.



Definition 4 (Concept Set Edit Distance). Let CN be a set of concept names, 𝑇 be a TBox on
CN and 𝒜,ℬ be sets of concepts 𝒜,ℬ ⊆ CN. The concept set edit distance from 𝒜 to ℬ is
defined as the minimum cost of a set of concept edits which transform 𝒜 into ℬ.

Intuitively, the concept set edit distance represents the minimum cost of converting every
concept present in the first set, into every concept present in the second. For example, given
two sets of concepts 𝒜 = {Cat, Insect} and ℬ = {Animal}, and the TBox from the previous
example, then their concept set edit distance will be 𝐷𝑇 (𝒜,ℬ) = min{[𝑑𝑇 (Cat,Animal) +
𝑑𝑇 (Insect,⊤)], [𝑑𝑇 (Cat,⊤) + 𝑑𝑇 (Insect,Animal)]} = min {(2 + 2), (3 + 1)} = 4.

In the context of our framework, the concept set edit distance is used to measure how
conceptually similar two elements of an explanation dataset are and is one of the two key
components for generating counterfactual explanations. The second component involves the
black-box classifier which we want to explain. Specifically, we want counterfactual explanations
to represent small conceptual changes (small concept set edit distance) which lead to large
changes in the output of the classifier. For this reason, we define the significance of transforming
an element of an explanation dataset into another.

Definition 5 (Significance of Transformation). Let 𝐹 be a classifier, 𝑇 be a TBox and 𝑎 =
(𝑥𝑎, 𝐶𝑎), 𝑏 = (𝑥𝑏, 𝐶𝑏) be two elements of an explanation dataset for 𝐹 . The significance of
transforming 𝑎 into 𝑏 is defined as: 𝜎(𝑎, 𝑏) = |𝐹 (𝑥𝑎)−𝐹 (𝑥𝑏)|

𝐷𝑇 (𝐶𝑎,𝐶𝑏)

Significance of transformations is the measure we use to determine what constitutes a good
counterfactual explanation. The local explanations will have the form of a sequence of samples
of the explanation dataset (similarly to the approach by Poyiadzi et al. [7]), but they will be
accompanied by sets of concept set edits, which show what has to change conceptually in the
data sample for the classification to change. In practice, we construct a directed graph where
there is a node for each sample in the explanation dataset, and edges between pairs of nodes
𝑎, 𝑏 have a cost of 1

𝜎(𝑎,𝑏) and as a label the set of edits corresponding to the conceptual distance
𝐷𝑇 . We then compute the shortest path from the given sample to any sample in the desired
class, as described in Section 4.

Definition 6 (Local Counterfactual Explanation). Let 𝐷 = {𝑥𝑖, 𝐶𝑖} be an explanation
dataset for a classifier 𝐹 , and 𝐺 = (𝑉,𝐸) be a directed graph, where there is a 1-1 correspon-
dence between elements of 𝐷 and the set of vertices 𝑉 . The set of edges 𝐸 contains an edge of
weight 1/𝜎(𝑎, 𝑏) for every ordered pair of elements 𝑎, 𝑏 ∈ 𝐷. Each edge (𝑎, 𝑏) also has as a label
a sets of concept set edits which optimally transform 𝐶𝑎 into 𝐶𝑏. A counterfactual explanation
from element 𝑒 to a class 𝐻 is a path from the node corresponding to 𝑒 to any element 𝑓 for which
𝐹 (𝑓) = 𝐻 . Counterfactual explanations corresponding to a shortest path from 𝑒 to any 𝑓 are
called optimal counterfactual explanations.

The shorter the distance of a path corresponding to a local counterfactual explanation, the
better the explanation is considered since short distances represent significant transformations.

Finally, besides acquiring a local explanation on how a single sample should be changed for it
to be classified in a specific class, we are also concerned with more general explanations which
give us an overview of which type of edits are more likely to lead towards being predicted



as a specific class, given a generalization of the initial sample. For example, a counterfactual
explanation for a PhD student who is also a musician and was declined a loan might not
be informative enough. This extension to global explanations would be able to answer the
question “What do musicians usually change to have their loan accepted” and “What do PhD
students usually change to have their loan accepted”, which combined with its local explanation
might be useful for the user to better understand why the black-box is making these decisions.

Definition 7 (Region of Explanation Dataset). Let CN be a set of concept names, 𝒬 be a
set of concepts 𝒬 ⊆ CN, and 𝐷 = {𝑥𝑖, 𝐶𝑖} be an explanation dataset. A region of 𝐷 with
description 𝒬 is the subset 𝑅𝒬 ⊆ 𝐷 of the explanation dataset for which: (𝑥𝑖, 𝐶𝑖) ∈ 𝑅𝒬 ⇐⇒
∀𝑐1 ∈ 𝒬,∃𝑐2 ∈ 𝐶𝑖 : 𝑐2 ⊑ 𝑐1

A region of an explanation dataset is a subset of it which satisfies specific constraints, it is
essentially a query. For example given a region description 𝒞 = {Animal}, then the region 𝑅𝒬
will contain any samples (𝑥𝑖, 𝐶𝑖) of the explanation dataset which in their semantic description
𝐶𝑖 contain any concept 𝑐 which is included in Animal according to the TBox. Generalized
counterfactual explanations will then be statistical measures on all optimal local counterfactual
explanations from elements of a region. Specifically, they will measure how often a concept is
introduced (either via replacement or insertion) and subtract how often they are removed.

Definition 8 (Generalized Counterfactual Explanation). Let 𝑅𝒬 be a region of an expla-
nation dataset, and 𝐸𝑅𝒬 be the multi set containing the labels of optimal local counterfactual
explanations from each element of 𝑅𝒬 to the desired class. Given a set of concepts 𝒞 ⊆ CN, a gen-
eralized counterfactual explanation is an assignment of importance to every concept C ∈ 𝒞.
, where the importance of a concept C is defined as:

|{𝑒𝑥→C∈𝐸𝑅𝒬}|−|{𝑒C→𝑥∈𝐸𝑅𝒬}|
|𝑅𝒬| , where 𝑥 ∈ CN

For example consider an explanation dataset for a classifier which determines if an image de-
picts a bedroom or a veterinarian’s office. A region of this explanation dataset with a description of
{Animal}might contain three elements: (𝑥1, {Cat,Dog}), (𝑥2, {Insect}), (𝑥3, {Human,Sofa}).
Let the first image be classified as veterinarian’s office, while the other two are classified
as bedroom. The optimal local counterfactual explanations from each element to the class
veterinarians office might have labels: 𝐸1 = ∅ (since 𝑥1 is already classified in the desired
class), 𝐸2 = {𝑒⊤→Human, 𝑒Insect→Cat} and 𝐸3 = {𝑒Human→Cat, 𝑒Sofa→⊤}. Then the mul-
tiset 𝐸𝑅𝒞 containing the labels of all optimal counterfactual explanations will be 𝐸𝑅𝒞 =
{𝑒⊤→Human, 𝑒Insect→Cat, 𝑒Human→Cat, 𝑒Sofa→⊤}. Then, a generalized counterfactual explanation
for this region would be: a) Cat with importance 2

3 = 2
3 − 0, b) Insect and Sofa with importance

−1
3 = 0− 1

3 , and c) Human with importance 0 = 1
3 − 1

3 . Negative importance indicates that
the concept is usually removed, while positive importance that it is introduced.

4. Computing Counterfactual Explanations

For generating the proposed counterfactual explanations in practice, we need a classifier 𝐹 , an
explanation dataset 𝐷, and a TBox 𝑇 . There are three steps to computing explanations. The
first step is to create the graph mentioned in Definition 6, the second step is to find appropriate



paths in this graph, and the third step (only for generalized counterfactual explanations) is to
accumulate these paths and compute importance (from Definition 8). We show an outline of
how we create the graph in Algorithm 1. For computing the concept distance between two
concepts we find the shortest path on the undirected TBox graph using Dijkstra’s algorithm with
a complexity of 𝑂(|CN|+ |𝑇 | log |CN|). For computing Concept Set Edit Distance (Definition
4) from set of concepts 𝒜 to set of concepts ℬ, we first remove common elements from both
sets, then we create a bipartite graph in 𝑂(|𝒜||ℬ|), where each element of 𝒜 is connected
with an edge to all elements of ℬ with a weight for each edge corresponding to the concept
distance, and then we compute the minimum weight full matching of the bipartite graph by
using an implementation of Karp’s algorithm[30] for the problem with a time complexity of
𝑂(|𝒜||ℬ| log |ℬ|). Thus, to create the graph with Algorithm 1, the total time required will
end up being 𝑂((𝑛+ 𝑡 log 𝑛)𝑚4𝑘2 log𝑚), where 𝑛 = |CN|, 𝑚 is the maximum cardinality of
a set of concepts, 𝑘 is the size of the explanation dataset and 𝑡 is the size of the TBox. The
creation of this graph is only done once per explanation dataset and TBox. To then compute
local counterfactual explanations (Definition 6), we use Dijkstra’s algorithm to find the shortest
path, on the already constructed graph (including edge costs and labels) 1.

5. Experiments

The experimental objective we found was most in tune with counterfactual explanations was to
test a classifier for biases. For example, if we trained a classifier on a set of images that included
a "grey cube" in all the images of a specific class, would our counterfactual explanation result in
an "add a grey cube" answer when asked how should we alter an image for it to belong in that
class? This is precisely what we did with the CLEVR-Hans3 [25] dataset. Due to the control
it provides on the generated images, and their accompanying description, it was the logical
first step. Indeed, we found that our counterfactual algorithm was consistently able to detect
these biases. Once this more technical task was accomplished, we sought to experiment on a
more intuitive task. The advantage of such a task would be that it simulates a more real-world
problem than 3D colored objects but, as with many real-world problems, it does not have an
impartially correct bias. For example, what defines a bedroom as being a bedroom, and what
makes a kitchen, a kitchen, in the eyes of the classifier? According to our counterfactual model,
for instance, the classifier seems to think that a "bed" and a "refrigerator" are the defining factors
of the above classes.

5.1. CLEVR-Hans3

The goal when experimenting with this dataset was twofold. First, we observe some image
sequences representing local counterfactuals (ignoring the edit labels), to compare the results
with results generated by the implementation provided for FACE [7]. Second, we want to see if
the generalized counterfactuals can easily detect the (known) bias of the classifier.

1Code is available at: https://github.com/geofila/Conceptual-Edits-as-Counterfactual-Explanations



Algorithm 1: Explanation Graph Construction
Data: A classifier 𝐹 , an explanation dataset 𝐷, an undirected TBox Graph 𝐺𝑇

Result: Explanation Graph 𝐺𝐸

//the explanation graph will have a node for each element in the explanation dataset
Initialize Directed Graph 𝐺𝐸 = (𝑉𝐸 = 𝐷,𝐸𝐸 = ∅);
foreach (𝑥𝑖, 𝐶𝑖) ∈ 𝐷 do

foreach (𝑥𝑗 , 𝐶𝑗) ∈ 𝐷 ∖ {(𝑥𝑖, 𝐶𝑖)} do
Initialize Graph 𝐺𝐶 = (𝑉𝐶 = 𝐶𝑖 ∪ 𝐶𝑗 , 𝐸𝐶 = ∅);
foreach 𝑘 ∈ 𝐶𝑖 do

foreach 𝑙 ∈ 𝐶𝑗 do
//Compute concept distance using TBox graph
𝑑𝑇 (𝑘, 𝑙) = |ShortestPath(𝐺𝑇 , 𝑘, 𝑙)|
//Add an edge to 𝐺𝐶 with weight 𝑑𝑇
𝐸𝐶 = 𝐸𝐶 ∪ {(𝑘, 𝑙, 𝑑𝑇 )}

end
end
//Compute minimum weight full matching of the bipartite graph 𝐺𝐶

{(𝑐𝑚, 𝑐𝑛)}, 𝑤 = MinFullMatch(𝐺𝐶)
//Concept Set Edit Distance
𝐷𝑇 (𝐶𝑖, 𝐶𝑗) = 𝑤
//Compute inverse significance

1
𝜎(𝑖,𝑗) =

𝐷𝑇 (𝐶𝑖,𝐶𝑗)
|𝐹 (𝑥𝑖)−𝐹 (𝑥𝑗)|

//Add an edge to the explanation graph 𝐺𝐸 with weight 1
𝜎 and as a label the edits

corresponding to the minimum weight full match
𝐸𝐸 = 𝐸𝐸 ∪ {(𝑣𝑖, 𝑣𝑗 , 1

𝜎(𝑖,𝑗) , {𝑒𝑐𝑚→𝑐𝑛})}
end

end
return G𝐸

5.1.1. Setting

CLEVR-Hans3 is a dataset of images of sets of 3D geometric shapes which are split into
three classes. For each image, information is provided regarding the objects which are
present concerning their shape (Sphere,Cube,Cylinder), their size (Large,Small), their ma-
terial (Metallic,Rubber) and their color (Blue,Yellow,Brown,Grey,Green,Purple,Cyan,Red).
The three classes contain images that depict: a) a Large Cube and a Large Cylinder, b) a Small
Metal Cube and a Small Sphere, and c) a Large Blue Sphere and a Small Yellow Sphere. Further-
more, the first two classes are confounded in the training set, with an intentionally added bias.
For the first class, in the training set, the Large Cube is always Grey, while in the test set the
color of the Large Cube is random. For the second class, the material of the Small Sphere is
Metal in the training set, while in the test set the material of the Small Sphere is random. This
means that we expect classifiers trained on the training set to be biased towards the confounding
factor. As a classifier we trained a resnet34 [31] model which achieved 99% accuracy on the
validation set (which is confounded), while for the test set the per-class F1 scores were class 0:
0.27, class 1: 0.54, class 2: 0.92. As expected the performance is poor for the confounded classes.

We created two explanation datasets, one from the training set (in order to be compared with



FACE which is intended to be run on the training set), and one from the test set in order to
attempt to detect the biases acquired in training. As a set of concept names CN, we defined a
concept for every combination of shape, size, material, and color (including the absence of any
of the above), leading to |CN| = 4× 3× 3× 9 = 324. As a TBox, we added an inclusion axiom
from each concept in CN to any other concept with the same description where one element is
missing. For example GrayCube ⊑ Gray and GrayCube ⊑ Cube. This way we assigned sets of
concepts to each element in the dataset, based on the descriptions provided by the creators of
the dataset in the corresponding json files.

5.1.2. Local Counterfactuals

In Figure 2 we show local counterfactual explanations generated for three randomly selected
images (first column) which were classified in class 1 (Small Metal Cube, Small Sphere - where
the Small Sphere is always Metal only in the train set) with the target class being class 0
(Large Cube, Large Cylinder, where the Large Cube is always Grey only in the train set), at
first using the FACE algorithm [7] (second column) and then using our proposed algorithm
(third column). A first observation is that neither of the results is very intuitive, and we argue
that the form of the explanations (sequence of samples from the training set) is the reason. A
second observation is that our approach tends to keep the number of objects present in an
image constant, which makes sense due to the cost of adding and deleting concepts instead
of replacing them, while FACE which relies on the distribution of the dataset and operates on
pixels, having no knowledge of the objects depicted, tends to transition to images which contain
many objects. A final observation is that in both methodologies the color of the Large Cube in
the target image is always Grey, which is expected since this experiment ran on the training set.

5.1.3. Generalized Counterfactuals

In Figures 3,4 we show two generalized counterfactual explanations. The first (fig.3) shows the
importance of concepts for the region of the explanation dataset constructed from the test set of
CLEVR-Hans3 which classified in class 1, with the target class being class 0, while the second
(fig. 4) shows the importance of concepts for the same region, with the target class being class
2. As mentioned in section 3, negative importance indicates that a concept tends to be removed
for the given region and target class, while positive importance indicates that it tends to be
inserted.

A first observation is that the bias of the classifier is immediately detected for the confounded
class 0. As mentioned previously, the confounding factor for class 0 is that the Large Cube
is always Grey in the train set. This is apparent from the first three bars of the plot on the
left, where the most important insertions seem to be the concepts: (Gray, GrayLargeCube,
GrayLarge). The reason for which GrayLargeCube has a larger importance than GrayLarge is
because, for some local counterfactuals, GrayLarge objects (which are not necessarily Cube)
might be removed, thus lowering the importance of this concept. Class 2 on the other hand
(Large Blue Sphere, Small Yellow Sphere) is not confounded, and the classifier is not expected
to be biased (test F1 score of 0.92). The most important removals seem to be: combinations of
Cube, Small, Metal - which makes sense since the source region contains images classified in



Source Image FACE Counterfactual Our Counterfactual

Figure 2: Counterfactuals for 3 randomly selected images (first column) which classified in class 1 with
target class 0, using the FACE algorithm (second column) and our proposed method (third column)

class 1 (Small Metal Cube, Small Sphere, where the Small Sphere is always Metal in the train
set). The most important insertions seem to be: Blue, Yellow, Sphere, and combinations of Blue,
Large, Sphere which coincides with the definition of the class.

5.2. COCO

As a second experiment, we decided to explore some more intuitive examples and thus decided
to take advantage of the COCO dataset [26], which contains real-world images, annotated with
objects, which we can automatically link to external knowledge such as WordNet.

5.2.1. Setting

Examining COCO’s labels in the process of determining a class transformation that will utilize
them, we concluded that the two classes that should be used are "Restaurant" related and
"Bedroom" related images. Specifically, for the restaurant-related class we gathered all images
from COCO that contained the concepts: 1. {dining table, person, pizza} (1000+ images) 2.
{dining table, person, wine glass} (1200+ images). For the bedroom-related class we gathered all
images that contained the label combinations of: 1. {bed, person} (1300+ images) 2. {bed, book}
(800+ images) 3. {bed, teddy bear} (300+ images). On top of that, we wanted to make sure that



Figure 3: Generalized Counterfactual Explanation for the region of the explanation dataset for CLEVR-
Hans3 which is classified in class 1, with the target class being class 0

we included some images that might be puzzling for the classifier. Those images were the ones
including COCO label combinations of: 1. {bed, fork} (10 images) 2. {bed, spoon} (20 images)
3. {bed, wine glass} (20 images) 4. {bed, pizza} (10 images) 5. {dining table, bed} (170 images).
For each image in COCO, a description of the objects present in that image is provided. To
create the explanation dataset, we automatically linked these object descriptions with WordNet
synsets by using the NLTK python package2. We used WordNet synsets as the set of concept
names CN, and the hyponym-hypernym hierarchy as a TBox. We then acquired the image

2https://www.nltk.org/howto/wordnet.html



Figure 4: Generalized Counterfactual Explanation for the region of the explanation dataset for CLEVR-
Hans3 which is classified in class 1, with the target class being class 2

classifier pre-trained on the PLACES dataset [32], provided by the creators of the dataset 3, for
scene classification, and made predictions on the aforementioned subset of COCO. This is the
black-box classifier for which we provide explanations.

5.2.2. Local Counterfactuals

In the first row of Figure 5 we show a local counterfactual explanation for an image classified as
a “Bedroom” to the target class “Playhouse”, which requires only one Concept Edit (𝑒⊤→Child).

3http://places2.csail.mit.edu/index.htm



Figure 5: Counterfactual explanation for changing the prediction of the image on the left from ‘Bed-
room’ to ‘Playhouse’ is simply to add a child (𝑒⊤→Child) (top) and from ‘Bedroom’ to ‘veterinarians
office’ is simply to add a cat (𝑒⊤→Cat) (bottom).

This example is interesting because “Playhouse” is an erroneous prediction (the ground truth
for the second image should be “Bedroom”), thus immediately we detect a potential bias of
the classifier, that if a Child is added to an image of a “Bedroom” it might be classified as a
“Playhouse”. Similarly, in the second row of Figure 5 we show a local counterfactual explanation
for an image which is classified as “Bedroom” to the target class “Veterinarian’s Office”, and
the resulting target image is an erroneous prediction. The resulting edit is simply to add a Cat.
Finally, in Figure 6 we show a counterfactual explanation, where the path on the graph has two
steps. The source image is classified as a “Bedroom” and the target class is “Computer Room”.
This shows a smooth transition from the source image to the target class, by first adding a
person (there are already two laptops in the source image), and then adding two more people
and two more laptops.

5.2.3. Generalized Counterfactuals

In Figures 7,8 we see two examples of generalized counterfactual explanations on the COCO
dataset. As before, each bar’s numeric value shows the importance of the insertion (positive) or
removal (negative) of that specific concept, in the process of transforming from a source region
of an explanation dataset, to a target class.

Without revealing the source region and the target class for each figure, we can try to work
out what those are, just by looking at the most frequent additions and removals. On the first
(fig.7), which is the more trivial of the two, we see that the most common removals from the
source images were concepts relevant to {furniture, bed, animal, carnivore, dog}, while the most



Figure 6: Counterfactual explanation for changing the prediction of the image on the left from “Bed-
room” to “Computer Room”, which requires two steps

common additions were the concepts {home appliance, refrigerator, white goods, consumer
goods}. From this, we can assume that the source region was likely bedroom images (with a
bias towards pets) and the target class was probably a kitchen. The true classes were, indeed,
"bedroom" and "kitchen". On the second (fig.8), we see that most frequent removals revolved
around {instrumentality, artifact, electronic, furniture, telecommunications, TV, broadcasting,
kitchen} and the most common additions around {carnivore, animal, mammal, feline, cat, dog}.
Knowing that we are dealing with a classifier of rooms and places, we’d probably guess a
kitchen for the source and a location with domestic animals for the target. The actual classes
were "bedroom" targeting "veterinarian", which raises an interesting question: why did we
see "kitchen" instead of "bed" in the bedroom class? The answer is that no beds were actually
removed, since veterinarian office images tend to include beds. On the other hand, our dataset
contains a number of studio-apartment bedroom images which had part of the kitchen appearing
in the photo - kitchens that are mostly missing from a vet’s office and had to be removed. Another
thing to note is that those examples were not cherry-picked. During our experiments we could,
most of the time, estimate the source region and target class by looking at the edit frequencies.
Notably, the most confusing results were when we tested the "computer room" target and found
out that the generalized counterfactual explanation was very often adding people, but never
laptops or computers. After investigating what seemed like a bug, we realized that most images
from our dataset which were classified as a "computer room" had no computers in them, but
people working in lab-appearing rooms.

5.3. Discussion

In our experiments we got interesting results, where both local and generalized counterfactual
explanations seem to be informative, understandable and usable. In the CLEVR-Hans3 case
(sec.5.1) we were able to detect the foreknown biases of the classifier, while in the COCO case
(sec.5.2) we even detected unknown biases (for example the depiction of people was more
important than that of laptops for the class “computer room”), and further insight into the
classifier, which we had not thought about (for example that the classifier expects veterinarian’s



Figure 7: Generalized Counterfactual Explanations for the region of the explanation dataset for COCO
which is classified as "bedroom", with the target class being "kitchen"

offices to depict beds among other objects). By comparing with the FACE algorithm (sec.5.1.2),
we got a hint of the merits of considering explanations using high-level external terminology
instead of low-level features, since even without stating the concept edits corresponding to
counterfactual paths, we found the resulting images more intuitive and easy to compare with
the source images.

An apparent drawback of the proposed framework, for it to be used in practice, is its reliance
on the existence of semantically annotated data (i.e. an explanation dataset). Such datasets do
exist for various domains, but they are not abundant. We have identified two ways of mitigating
this drawback, which will be explored further in future work. The first is to semantically
annotate data automatically by employing information extraction methods, such as object



Figure 8: Generalized Counterfactual Explanations for the region of the explanation dataset for COCO
which is classified as "bedroom", with target class "veterinarian"

detection or scene-graph generation for images, or other methods which automatically link
entities to knowledge (for instance from text to encyclopedic knowledge [33]). The second
way of mitigating this drawback, which is more suited for decision-critical domains such as
medicine, is to invest resources for the manual annotation and curation of explanation datasets.
We believe that having data manually characterized by domain experts could improve user
awareness and trust of the generated explanations.



6. Conclusion

We have introduced a novel framework for representing and computing counterfactual ex-
planations and have shown some preliminary results. There are many directions which we
plan to explore in future work. First of all we plan to expand this framework further into
Description Logics, to include roles and individuals, allow for more complex axioms in the TBox,
and to explore how this effects the resulting explanations, both theoretically and practically.
Furthermore, we plan to expand our evaluation framework to include datasets from multiple
domains and applications, focusing on those where explainability is imperative, such as medical
applications. We aim to experiment providing explanations for text, audio and tabular data.
Ideally, the evaluation framework will include human evaluators in the future. Finally, we aim
to study the properties of explanation datasets, as they are defined in our framework, and as
they have been approached in other works [18],[19]. We will explore the effects of the size of an
explanation dataset, by for example using the full COCO dataset. We will also experiment with
using the same explanation dataset, linked to a different TBox (for example ConceptNet instead
of WordNet), which will require us to also experiment with different notions of “conceptual” or
“semantic” distance.
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